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Executive Summary 

 

This report summarizes research work conducted under TO4100 at the California PATH 

ATMS Center at the University of California, Irvine. Under TO4100, there are three sub-

projects, including:  

 

1. TO4100-1: Capability-Enhanced PARAMICS Simulation with Developed API 

Library; 

2. TO4100-2: Adaptive Signal Control System with On-Line Performance Measure 

for Single Intersection; 

3. TO4100-3: An Analytical Dynamic Traffic Assignment Model with Probabilistic 

Travel Times and Perceptions. 

 

These research efforts are complementary and collaborative with some ongoing and/or 

recently completed PATH faculty research projects at the testbed. The corresponding 

faculty projects are:  

1. MOU 359 - Simulation of ITS on the Irvine FOT Area Using The Paramics 

Scalable Microscopic Traffic Simulator,  

2. MOU 3008 - Field Investigation of Advanced Vehicle Reidentification 

Techniques and Detector Technololgies, and  
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3. TO 4110 - Considering Risk-Taking Behavior in Travel Time Reliability.  

 

To one extent or another, each of these existing projects addresses providing capability to 

Caltrans for real-time management of freeway systems – a capability that is dependent 

upon corresponding capability both to predict flow patterns in real-time and to adapt 

ramp metering and signal control strategies to meet these predicted flows. 

 

Research summaries for each of sub-projects under TO4100 are given in the following.   

 

1. Capability-Enhanced PARAMICS Simulation with Developed API Library 

 

Paramics is a suite of high performance software tools used to model the movement and 

behavior of individual vehicles on urban and highway road networks. The Paramics 

Project Suite consists of Modeller, Processor, Analyzer, and Programmer. Paramics 

Programmer is a framework that allows the user to customize many features of 

underlying simulation model. Access is provided through a Functional Interface or 

Application Programming Interface (API).  

 

The capability to access and modify the underlying simulation model through API is 

essential for research. Such an API should have a dual role, first to allow researchers to 

override the simulators default models, such as car following, lane changing, route 

choices for instance, and second, to allow them to interface complementary modules to 

the simulator. Complementary modules could be any ITS application, such as signal 

optimization, adaptive ramp metering, incident management and so on. In this way, new 

research ideas could be easily tested using simulator before the implementation in the real 

world.  

 

We have developed a library of plug-in modules to enhance the capabilities of 

PARAMICS simulation through API.  These API modules include actuated signal 

control, time-based ramp meter control, path-based routing, loop data aggregator, 

performance measures, MYSQL database connection, and network communication 
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through CORBA, etc.  With these functionality enhancements, PARAMICS simulation 

could be customized to test and evaluate various ITS applications. 

 

2. Adaptive Signal Control System with On-Line Performance Measure for Single 

Intersection 

 

This research introduces an adaptive signal control system utilizing an on-line signal 

performance measure. Unlike conventional signal control systems, the proposed method 

employs real-time delay estimation and an on-line signal timing update algorithm. As a 

signal performance measure, intersection delay for each phase is measured in real-time 

via an advanced surveillance system that re-identifies individual vehicles both at 

upstream and downstream stations using vehicle waveforms obtained from advanced 

inductive loop detectors. In each cycle, the signal timing plan is optimized based on the 

delay estimated from the vehicle re-identification technology. The main thrust of the 

algorithm is the on-line control capability utilizing direct intersection delay measures. A 

description of the overall control system architecture and the optimization algorithm is 

addressed in this paper. Performance of the proposed system is evaluated with a high-

performance microscopic traffic simulation program, Paramics, and the preliminary 

results have proven the promising properties of the proposed system. 

 

3. An Analytical Dynamic Traffic Assignment Model with Probabilistic Travel 

Times and Perceptions  

 

Dynamic traffic assignment (DTA) has been a topic of substantial research during the 

past decade. While DTA is gradually maturing, many aspects of DTA still need 

improvements, especially regarding its formulation and solution capabilities under the 

transportation environment impacted by the Advanced Transportation Management and 

Information Systems (ATMIS). It is necessary to develop a set of DTA models to 

acknowledge the fact that the traffic network itself is probabilistic and uncertain, and 

different classes of travelers respond differently under uncertain environment, given 

different levels of traffic information. This work aims to advance the state-of-the-art in 
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DTA modeling in the sense that the proposed model captures the travelers’ decision 

making among discrete choices in a probabilistic and uncertain environment, in which 

both probabilistic travel times and random perception errors that are specific to individual 

travelers, are considered. Travelers’ route choices are assumed to be made with the 

objective of minimizing perceived disutilities at each time. These perceived disutilities 

depend on the distribution of the variable route travel times, the distribution of individual 

perception errors and the individual traveler’s risk taking nature at each time instant. We 

formulate the integrated DTA model through a variational inequality (VI) approach. 

Subsequently, we discuss the solution algorithm for the formulation. Experimental results 

are also given to verify the correctness of solutions obtained.  
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SUMMARY 
 
PARAMICS is one of the widely used microscopic traffic simulation program. One 
important feature of PARAMICS is that PARAMICS allows the user to customize many 
features of underlying simulation model through a Functional Interface or Application 
Programming Interface (API). We have developed a library of plug-in modules to 
enhance the capabilities of PARAMICS simulation through API.  These API modules 
include actuated signal control, time-based ramp meter control, path-based routing, loop 
data aggregator, performance measures, MYSQL database connection, and network 
communication through CORBA, etc.  With these functionality enhancements, 

                                                 
1 This paper has been accepted for presentation in the 9th ITS World Congress, Chicago, 2002. 



 3

PARAMICS simulation could be customized to test and evaluate various ITS 
applications. 
 
 
INTRODUCTION 
 
Simulation modeling is an increasing popular and effective tool for analyzing a wide 
variety of dynamical problems, which are not amendable to study by other means. Traffic 
simulation models can be classified as being either microscopic, mesoscopic, or 
macroscopic according to their representation of traffic flow (or vehicle movement). 
Microscopic models, such as PARAMICS, CORSIM, VISSIM, AIMSUN2, TRANSIM, 
MITSIM, continuously or discretely calculate and predict the state of individual vehicles, 
and measure the speed and location of each individual vehicle in the simulation. 
Macroscopic models, such as FREFLO, AUTOS, METANET, VISUM, aggregate the 
description of traffic flow to speed, flow, and density of each link in the network. 
Mesoscopic models, such as DYNASMART, DYNAMIT, INTEGRATION, 
METROPOLIS, have aspects of both macroscopic and microscopic models. These 
models have been applied successfully to particular studies, but their applications are 
relatively limited. Most are designed for particular applications and useful only for 
specific purposes, missing some components of ATMIS (1). Microscopic simulators, 
which do not depend on theoretical traffic flow models but on vehicle-vehicle 
interactions, are deemed more appropriate for evaluating various ITS applications. 
 
PARAMICS (PARAllel MICroscopic Simulation) is a suite of microscopic simulation 
tools used to model the movement and behavior of individual vehicles on urban and 
highway road networks (2). One important feature of PARAMICS is that PARAMICS 
allows the user to customize and extend many features of underlying simulation model 
through a Functional Interface or Application Programming Interface (API). Such an API 
should have a dual role, first to allow researchers to override the simulators default 
models, such as car following, lane changing, route choices for instance, and second, to 
allow them to interface complementary modules to the simulator. Complementary 
modules could be any ITS applications, such as actuated signal control, ramp metering, 
VMS (Variable Message Sign) control, and so on. With these functionality 
enhancements, PARAMICS simulation could be customized to test and evaluate various 
ITS applications (3).  
 
This paper is organized as follows. First, we will give a brief overview of California 
advanced traffic management system (ATMS) testbed, which is located at the University 
of California, Irvine. Then, the framework to enhance the functionalities of PARAMICS 
simulation through developed API library is given. The functions of plug-in modules in 
the library are described in the following. Finally, concluding remarks are presented. 
 
CALIFORNIA ATMS TESTBED 
 
The California ATMS Testbed at UC-Irvine is based on real-time, computer-assisted 
traffic management and ATM communication network. It provides an instrumented, 
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multi-jurisdictional, multi-agency transportation operations environment linked to 
university laboratories for real-world development, testing and evaluation of near-term 
technologies and ATMIS applications, and to serve as an ongoing testing ground for 
California and national ITS efforts. The testbed currently has direct links to three traffic 
management centers (TMCs): 

∑ Caltrans District 12 TMC 
∑ City of Anaheim TMC, and 
∑ City of Irvine Transportation Research Analysis and Control Center 

Real-time loop data are received at the testbed and then stored in the Oracle database. 
The signal control data of several major intersections in the city of Irvine are also 
obtained in the testbed. The signal timing can be modified through NT-based controllers 
by the testbed researchers. A general goal of the testbed is to develop and maintain an 
implementation platform that gives testbed researchers ''plug and play'' capabilities with 
ATMIS modules and sub-systems. 
 
A microscopic traffic simulator, PARAMICS, is integrated to the testbed development 
environment. The prime objective of using traffic simulators in UCI ATMIS Testbed is to 
serve as both an off-line evaluation/design tool, and an on-line control / guidance tool for 
dynamic transportation management. 
 
As a suite of ITS-capable, user-programmable, high-performance microscopic traffic 
simulation package, PARAMICS offers very plausible detailed modeling for many 
components of an ‘ideal’ simulator. Accurate geometry of network and smooth coding of 
links in PARAMICS are important for simulation results because driver’s behavior relies 
on characteristics of drivers and vehicles, the interactions between vehicles, and network 
geometry as well. The ability of PARAMICS to simulate the real-world traffic has been 
shown by former efforts on the model calibration and validation of PARAMICS (4,5).  
 
PARAMICS is fit to ATMIS research due to its high performance, scalability and the 
ability of modeling the emerging ITS infrastructures, such as loop detectors and VMS 
(6). In addition, PARAMICS provides users with API through which users can customize 
and extend many features of the underlying simulation model without having to deal with 
the underlying proprietary code.  
 
PARAMICS in the ATMS testbed need to be customized with the following reasons:  

∑ PARAMICS does not directly provide the control logic of ATMIS applications, 
which are based on the real-time data collection and data communication between 
on-site ITS infrastructures and local controllers or traffic management centers.  

∑ The built-in traffic models of PARAMICS, such as car-following, routing and 
lane-changing models, etc. need to be replaced with some user-preferable models.  

 
 
FRAMEWORK OF SIMULATION LABORATORY 
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The simulation laboratory is a capability-enhanced micro-simulation environment with 
the ability of linking simulation with the real world. The framework of the simulation 
laboratory is shown in Figure 1.  

 
The core of the simulation laboratory is PARAMICS, which is regarded as a simulated 
traffic system with the capabilities of ITS infrastructures. The time-dependent travel 
demands generation module can generate time-dependent demands for PARAMCIS 
simulations based on real-world loop data and historical travel time data stored in the 
database. Capability enhancements have been realized through the development of some 
basic ATMIS modules in PARAMICS API, including full-actuated signal controller, 
time-based ramp metering controller, VMS controller, path-based routing, and loop data 
aggregator API, that emulates the real-world data collection at a certain time interval 
from induction loop detectors. MYSQL database is used for storing intermediate results 
during the simulation process and CORBA interface is developed for the communication 
of different ATMIS modules. 
 
These capability enhancements of PARAMICS constitute the API library in the testbed. 
An advanced ATMIS module can be further developed on top of the library. This 
hierarchical development of API provides the user more freedom to control the 
simulation processes and hence overcome some challenges faced in modeling some ITS 
features. As a result, various ATMIS applications can be easily tested and evaluated in 
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Figure 1 Framework of simulation laboratory
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this capability-enhanced micro-simulation environment before the implementation in the 
real world. 
 
 
CAPABILITY ENHANCEMENTS OF PARAMICS 
 
The following API plugin modules, representing some basic ATMIS modules or user-
preferred performance measures, have been developed in the testbed in order to enhance 
the capability of PARAMICS (7). These APIs include path-based routing, actuated signal 
control, time-based ramp metering control, VMS control, loop data aggregator, 
performance measures, etc. With these capability enhancements, the simulation 
laboratory is better fit to the traffic scenarios in the real world and purposes of testing and 
evaluating various ATMIS research and implementation projects in simulation 
environment. 
 
1. Path-based Routing 
 
PARAMICS is not a path-based but a link-based simulator. The routing information of 
next two links is carried by vehicles, which will decide the following route based on the 
routing table stored at each node along its route. The routing table is calculated based on 
the assignment method of the simulation, which can be specified as one of the following, 
all-or-nothing, stochastic or dynamic feedback.  
 
This API controls the routing behaviors of selected vehicles by tracing them at every time 
step and forcing them to follow given routes. Their turning movements based on the 
internal routing decision should be override in order to force them to follow given routes. 
The route a vehicle should follow can be offline decided based on the configuration of 
VMS, or online decided based on a shortest path algorithm. 
 
2. Full-actuated Signal Control  
 
Fixed-time signal control is provided by PARAMICS. A plan/phase language is also 
provided to model actuated signals. However, it is difficult to be used to model the 
complex control logic of full-actuated signal control, widely used in California, and to 
replicate the logic to multiple signals.  
 
This API implements the eight-phase, dual-ring, concurrent controller logic. The data 
input to this API is the signal timing plan, the geometry and detector information of each 
intersection. Interface functions have been provided by this API for external modules to 
acquire and change the default timing plan.  
 
Based on the API module of the full-actuated signal control, the signal coordination logic 
is also implemented, with additional force-off logic to maintain the background cycle 
length and form green band for a particular phase (sync phase). This is used for emulating 
the signal coordination of Controller 2070. 
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3. Ramp Metering Control 
 
A time-based ramp control on either a one-car-per-green basis or a n-cars-per-green basis 
(with n > 1) is implemented. The data input of this API is a time-of-day ramp control 
plan and the detector information of each meter. This API provided some interface 
functions for external modules, i.e. some advanced ramp metering algorithms, to acquire 
the current metering rate and set a new metering rate to a specific ramp meter.  
 
4. Variable Message Sign Control 
 
This API module interacts ATMIS applications with VMS signs. Through interface 
functions provided by this API, various ATMIS applications can dynamically update 
VMS information and then affect driver’s behavior timely. 
 
5. Loop Data Aggregation 
 
PARAMICS can output two types of loop detector data for analysis:  

∑ Point loop data, including flow, speed, headway, occupancy, and acceleration of a 
vehicle, and  

∑ Link loop data, including flow, average speed, density, lane use, and lane 
changing on a link.  

Point data is gathered at every time step when an individual vehicle passes over the loop; 
link data analyses the traffic data over a link, where loops locate, at a user-defined time 
period. However, many ATMIS applications demand point traffic data, but in an 
aggregated manner over user-defined time intervals, e.g. 30 seconds.  
 
Loop data aggregator emulates the outputs of real-world data collection from induction 
loops, through gathering point loop data at each time step of simulation and then 
aggregating at any time interval specified by users. The gathered data can be raw data or 
smoothed data in term of user’s choice. Aggregated loop data (including volume, 
occupancy, speed) can be output to text files or MYSQL database, and can be also 
accessed by interface functions defined in this API. 
 
6. MySQL Database  
 
A series of interface functions have been developed using MYSQL API functions for the 
purpose of connecting PARAMICS simulation environment with MYSQL database. This 
will fit to the need of storing and accessing large volume of data during the simulation 
process. 
 
7. CORBA Interface 
 
The API implements and generates a set of server objects for the relevant objects in the 
loaded simulation based on CORBA naming service. In this way, PARAMICS could be 
connected to other field device objects, or other ATMIS modules. 
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8. Performance Measure 
 
PARAMICS provides a variety of measures of effectiveness (MOE) such as vehicle flow, 
delay, loop count, occupancy, turning counts, etc. The function of this set of performance 
measure APIs is to provide more user-preferable measures and some measures that 
cannot be provided by PARAMICS directly.  
 

8.1 Overall Performance Measures 
 
Due to the randomness of microscopic simulations, two measures including the average 
network travel time and its standard deviation are used to represent the system 
performance for the whole network. The average network travel time is the weighted 
mean of the average travel times of all OD pairs. The standard deviation of the average 
network travel time serves as a measure of the reliability of the network, which is the 
weighted standard deviation of the average travel times of all OD pairs. They are defined 
as  
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where Ni,j is the total number of vehicles that actually traveled from origin i to destination 
j; Ti,j is the average OD travel time from origin i to destination j; Std(Ti,j) is the standard 
deviation of the average OD travel time from origin i to destination j. 
 

8.2 Freeway Performance Measures 
 
There are two parts of the freeway system, freeway mainline and entrance ramps. For the 
freeway mainline, we have the following two performance measures, the average speed 
and its standard deviation. Two loop detector stations placed on the upstream and 
downstream of the freeway mainline need to be specified as measurement points. 
 
The measures for entrance ramps are the total on-ramp delay and the time percentage of 
the on-ramp queue spillback to the local street. These two measures are used to evaluate 
the effect of ramp control to the traffic flow on entrance ramps. 
 

8.3 Arterial Performance Measures 
 
We have two levels of performance measures for arterials. If the study is about the signal 
control of intersections, the performance measure we use is the intersection delay, 
including average stop delay, control delay, queue length of each approach, average 
travel time of a movement of an intersection at a certain aggregation level. 
 
If the study is about an arterial corridor, the performance measure is the average travel 
time and its standard deviation between two measurement points, which can be two loop 
detector stations placed on the upstream and downstream of the arterial corridor. 
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ADVANCED ATMIS MODULES 
 
All API modules mentioned in last section are basic ATMIS modules. An advanced 
ATMIS module can be an advanced ramp metering algorithm, signal optimization 
algorithm, or a dynamics traffic assignment algorithm, etc. The common feature of these 
advanced ATMIS modules is that they need to be developed based on one or more basic 
ATMIS API modules. This leads to a hierarchical framework of API development, which 
can provide the user more freedom to control the simulation processes and hence 
overcome some challenges faced in modeling some ITS features. As a result, various 
ATMIS applications can be easily tested and evaluated in this capability-enhanced micro-
simulation environment before the implementation in the real world.  
 
We have developed a set of advanced ATMIS modules about signal and ramp metering.  
For the signal control, multiple actuated-signal plan API and signal optimization based on 
real-time delay estimation algorithm have been further developed on top of the actuated 
signal API and intersection delay API. For the ramp metering, some advanced ramp 
metering algorithms have been further developed as the advanced ATMIS modules based 
on the ramp metering API and loop data aggregator API. These algorithms include 
ALINEA proposed by Papageorgiou, BOTTLENECK used in Washington State, ZONE 
used in Minnesota, and SWARM deployed in California. 
 
 
CONCLUDING REMARKS 
 
The capabilities of PARAMICS have been enhanced by integrating a set of API modules, 
including actuated signal control, time-based ramp control, loop data aggregator, Path-
based routing, Performance measures, CORBA interface, and MYSQL database 
connection.  
As a result, the customized simulation laboratory can be better fit to the traffic scenario in 
the real world and potentially, various ATMIS applications can be tested and evaluated in 
this simulation laboratory. We have used this simulation laboratory for signal 
optimization (8), the evaluation of adaptive ramp-metering algorithms, including the 
ALINEA, BOTTLENECK, ZONE, SWARM algorithms (9), and the evaluation of the 
effects of various ITS strategies, including traveler information, adaptive signal control, 
incident management, adaptive ramp metering, and their combination, under the traffic 
condition of year 2010.  
 
To sum up, API programming provides users a timely solution to implement, test, and 
evaluate various existing or upcoming ATMIS strategies in a micro-simulator. Our 
practices in PARAMCIS have made PARAMICS fit to the functionality requirements of 
our ATMS testbed. 
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Abstract:  
 
This paper introduces an adaptive signal control system utilizing an on-line signal 
performance measure. Unlike conventional signal control systems, the proposed method 
employs real-time delay estimation and an on-line signal timing update algorithm. As a 
signal performance measure, intersection delay for each phase is measured in real-time 
via an advanced surveillance system that re-identifies individual vehicles both at 
upstream and downstream stations using vehicle waveforms obtained from advanced 
inductive loop detectors. In each cycle, the signal timing plan is optimized based on the 
delay estimated from the vehicle re-identification technology. The main thrust of the 
algorithm is the on-line control capability utilizing direct intersection delay measures. A 
description of the overall control system architecture and the optimization algorithm is 
addressed in this paper. Performance of the proposed system is evaluated with a high-
performance microscopic traffic simulation program, Paramics, and the preliminary 
results have proven the promising properties of the proposed system. 
 
Key Words: adaptive signal control; vehicle re-identification; intersection delay 
estimation; signal plan optimization 
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1. INTRODUCTION 
 
A common function of a traffic control system is to seek to minimize the delay 
experienced by vehicles traveling through a road network of intersections by 
manipulating the traffic signal plans. There are various levels of sophistication in traffic 
signal control system applications. Basically, modes of operation can be divided into 
three primary categories (USDOT, 1996):  pre-timed, actuated and traffic responsive. 
Under pre-timed operation, the master controller sets signal phases and the cycle length 
based on predetermined rates. These predetermined rates are determined from historical 
data.  Common practice to develop pre-timed signal plans utilizes such offline tools as 
TRANSYT, which are based on traffic flows and queues observed from field data 
collection (McShane, 1997).  Pre-timed control frequently results in the inefficient usage 
of intersection capacity because of the inability to adjust to variations in traffic flow and 
actual traffic demand; this inefficiency is pronounced when flows are substantially below 
capacity. An actuated controller overcomes the problem of a pre-timed controller by 
operating signals based on traffic demands as registered by the actuation of vehicle 
detectors.  The green time for each approach can be varied between minimum and 
maximum lengths depending on flows. Cycle lengths and phases are adjusted at intervals 
set by vehicle actuation of loop detectors. The main feature of various actuated 
controllers is the ability to adjust the signal phase lengths in response to traffic flow, but 
attempt no systematic optimization. In the traffic responsive mode, the signal timing plan 
responds to current traffic conditions measured by a detection system.  The general traffic 
responsive strategies in use are either selection of a background signal timing plan based 
on detector data, or online computation of a background timing plan. The computation 
time interval may range from one cycle length to several minutes.  
  
With recent advances in communication network, computer, and sensor technologies, 
there is increasing interest in the development of traffic responsive signal control 
systems. Numerous systems have been proposed. The most notable of these are SCOOT 
(Hunt, 1982), developed in England, and SCATS (Lowrie, 1982), developed in Australia. 
Both SCOOT and SCATS are adaptive-cyclic systems, in that they update the signal time 
plan at pre-specified time intervals. Other known methods under development over the 
last decade include PRODYN (Henry, 1989), UTOPIA (Mauro, 1990), OPAC (Gartner, 
1990), etc. These systems attempt to optimize traffic on-line without being confined to a 
cyclic time interval; i.e., the signal time plan may change at any time step depending on 
the optimization algorithm. Compared to pre-timed signal control, these systems 
undeniably improve overall performance in terms of total delay in the controlled network. 
The usual improvements amount to some 10% (Boillot, 1992).   
 
Despite the encouraging development in adaptive signal control research in recent years 
and the added efficiency that has been achieved through the deployment of adaptive 
signal control, the prevailing lack of accurate prediction of traffic demands over the 
projected time horizon continues to impede the realization of substantial additional 
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savings. Most prediction models rely on flow data from such point detectors as 
conventional inductance loops, which place severe limits on the estimation of traffic 
variables. Because of this feature, these models cannot be modified easily for feedback 
real-time control schemes based on observation of variables other than flow, except 
indirectly (through ad-hoc prediction of queue lengths without using link flow models, 
for example).  
This paper introduces an adaptive signal control system utilizing an on-line signal 
performance measure. Unlike conventional signal control systems, the proposed method 
employs real-time delay estimation technology and an on-line signal timing update 
algorithm. Intersection delay is estimated in real-time based on vehicle re-identification 
using an algorithm that matches individual vehicle waveforms obtained from advanced 
inductive loop detectors. Such vehicle re-identification technology has proven its 
capability to re-identify individual vehicles (Sun et al., 1999) and in estimating real-time 
intersection delay. In this approach, the signal timing plan is optimized each cycle based 
on the delay estimated from the vehicle re-identification technology.  
 
This paper is outlined as follows. The next section provides a description of the overall 
architecture of the signal control scheme. Section 3 presents a delay estimation scheme 
based on vehicle re-identification technology. Section 4 shows how the signal timing plan 
is optimized using the estimated delay. Section 5 evaluates the performance of the 
proposed method via microscopic traffic simulation experiments. Finally, Section 6 
presents conclusions and future research.  
 
2. OVERALL SYSTEM ARCHITECTURE 
 
This section provides the overall architecture of the proposed adaptive signal control 
system with on-line performance measure. The system consists of five components: 1) 
Surveillance System, 2) Vehicle Re-identification, 3) Delay Estimation and Projection, 4) 
Signal Timing Optimization, and 5) Traffic Signal Controller. Figure 1 presents overall 
framework of the proposed adaptive signal control and connectivity of these components. 
The blocks above the dashed line are system blocks, which represent the operational 
mechanism of traffic signal systems. The blocks below the dashed line are components of 
the online signal optimization module that include the delay estimation via vehicle re-
identification and the signal parameter optimization.  

 
Figure 1. Overall Framework of Feedback Adaptive Signal Control 

 

Signal Controller Traffic Lights
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The main thrust of the proposed systems is to utilize a direct measure of delay for optimal 
signal control. The adaptive signal control logic attempts to directly respond to real-time 
demand variations from all intersections and allocates the green times on an “as needed” 
basis.  This online signal optimization module works as a complementary module to the 
existing signal controller  (either pre-timed or vehicle-actuated controllers) by providing 
optimal signal timing parameters to adapt to time-variant traffic condition.   
 
The formulation of optimal signal control strategies requires a rich representation of the 
interaction between demand (i.e., vehicle arrivals) and supply (i.e., signal indications and 
types) at the signalized intersection. Performance estimation itself is based on 
assumptions regarding the characterization of the traffic arrival and service processes. It 
is purported herein that the direct measure of delay from vehicle re-identification can be 
used effectively to represent the current traffic demand. The proposed framework allows 
the optimization algorithm to take full advantage of this delay estimation, and provides 
the optimal signal timing over the projected time horizon. The optimization bears the 
responsibility to ensure the signal timing is consistent with control objective functions. 
The procedure for delay estimation and signal timing optimization is presented in next 
two sections. 
 
3. REAL-TIME INTERSECTION DELAY ESTIMATION 
 
Inductive loop detectors have been used widely both for surveillance of traffic condition 
and for operation of control systems. Actuated signal control systems rely on actuation of 
loop detectors, and adaptive control systems use measurements from the loop detectors. 
In this study, the loop detectors are used not only for vehicle actuation but also for delay 
estimation.  
 
Detection by loop detectors is represented by a change of inductance in electric current. 
More detailed waveforms can be obtained using advanced loop detector cards. The 
waveform produces an individual vehicle’s signature that can be used for vehicle re-
identification. Different types of vehicles produce correspondingly different waveforms 
(so-called vehicle signatures), as shown in Figure 2. Even though the same type of 
vehicle produces a similar form of signature, each vehicle generally has characteristics  
(such as number of passengers, luggage, speed, profile, etc.) that produce a locally unique 
signature due to differences in these characteristics. Using such characteristics, a vehicle 
can be re-identified from different detector stations; the time difference between the 
repeat signatures at two stations represents the vehicle’s travel time.  
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(a) Sports Car           (b) Truck 
Figure 2. Typical Form of Vehicle Signature 

This vehicle re-identification technology has been tested extensively at the California 
ATMIS Testbed at the University of California, Irvine. For vehicle signature matching, 
Sun et al. (1999) have developed a lexicographical, sequential, multi-objective 
optimization method. They also have shown successful performance of the loop-based 
vehicle re-identification on a freeway section in California. The vehicle re-identification 
algorithm has also been applied at the Alton/ICD (Irvine Center Drive) intersection in the 
city of Irvine, California. The algorithm is currently being tested at a fully instrumented 
signalized intersection, using upstream and downstream advanced detector stations. 
According to preliminary results, the algorithm can correctly match more than 40% of 
vehicles passing through the intersection (throughs and turns), demonstrating its online 
capability of intersection delay estimation.  
 
In this study, the vehicle re-identification algorithm is used to estimate the average and 
total delay by movement during each cycle, and these estimates are fed to the online 
signal control algorithm to find the optimal green splits. The travel time for each 
individual vehicle is referenced to the time difference between its identification at an 
upstream detector and its re-identification at one of the downstream detector stations. 
Knowing the prevailing free speed for the approaches, and the detector distance between 
stations, the minimum travel time for each movement can be derived. The delay of each 
vehicle is calculated by deducting the minimum travel time from vehicle’s actual travel 
time. For each cycle, each movement’s delay is estimated from the measured delays of 
re-identified vehicles.   
 
Because both the deterministic and random components appear together in delay 
projection, we employ a projection equation to suppress oscillations due to the random 
components as follows: 

 
       )2()1()()(

321 -◊+-◊+◊= tdtdtdtd r aaa                                                     (1) 

 
where: d(t) = filtered vehicle delay by movement 
            dr(t) = raw vehicle delay value from vehicle re-identification 
            a1, a2, a3  = filter coefficients in the range, and a1 + a2 + a3 = 1.  
 
A signal timing plan for next time period is determined based on the projected delay. For 
the delay projection, filter coefficients need to be calibrated based on historical data. 
When a1 equals to 1 (a2 = a3 = 0), the system relies on current estimation. 
 
 
4. ONLINE SIGNAL CONTROL ALGORITHM 
 
This section presents the local adaptive optimization module, including signal state 
description, delay estimation, mathematical formulation and computation procedures. 
 
4.1 Signal State 
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A signal state at an intersection, denoted by the vector (S(t)), is defined by the following 
information: (1) the current green phase (p(t)), (2) the elapsed green time of current phase 
(g(t)), and (3)  the vehicle delay by movements (d(t) = [d1, d2, …, dL]’), here L is total 
number of movements in the intersection. So the signal state vector is represented by: 
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4.2 Control Objectives 
 
The major considerations in the operation of an isolated intersection are: (1) safe and 
orderly traffic movement, (2) vehicle delay, and (3) intersection capacity. Ideally, the 
objectives of minimizing total delay will: (1) maximize utilization of intersection 
capacity, and (2) reduce the potential for accident-producing conflicts.  
 
In this study, we consider two objectives: (1) minimization of total delay, and (2) fair 
treatment of each movement. The minimization of total delay, which allocates green time 
in favor of high demand movements, has been a well-accepted signal control objective. 
Such a strategy improves overall efficiency of the intersection; however, traffic from the 
minor approaches may suffer inordinate delay for the sake of overall system efficiency. 
This can result in a lengthy wait at light demand approaches. The second objective 
considers this fairness issue that can be caused when the system optimal strategy is 
applied. Based on these considerations, we adopt two-fold objective functions: the system 
efficiency, as represented by total vehicle delay on all approaches, and the system 
fairness, as represented by the standard deviation of average delay across each 
movement. 
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Where: 

)(kDm
n : travel delay for vehicle n in movement m at each time step k 

mN : total number of vehicles in movement m during the time horizon 

            M: total number of movements 
 K: total number of time steps 
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These two objectives are conflicting in their nature. A multi-objective intersection signal 
control is adopted that is a compromise of these two objectives, balancing the system 
efficiency and fairness. 
 
4.3 Parameter Optimization  
 
There are three primary control variables in traffic signal control: cycle length, phase 
sequence, and phase split. The proposed algorithm can optimize both cycle length and 
phase split. While cycle lengths are derived from historical traffic data, phase splits are 
updated every cycle based on the projected delay. The optimal cycle length can be 
obtained from off-line optimization based on mid-term (say, 15 minutes worth) traffic 
data. The crucial part of the algorithm is to adaptively seek the optimal phase split in real-
time. In this paper, we consider two control policies in seeking the optimal green splits: 
(1) minimization of total delay, and (2) minimization of average delay. The total-delay-
based on-line control is to maximize the efficiency of the system, but the fair treatment of 
each traffic movement is ignored. However, the average-delay-based on-line control tries 
to balance system efficiency and fairness in that it reduces the vehicle delays at one hand 
and keeps the system fair to each movement on the other, although it may gain less in 
terms of the system efficiency.   
 
This adaptive control can be applied both to pre-timed signal control and actuated signal 
control. While the control parameter for pre-timed signal control is the green time 
allocated to each phase, control parameters for actuated control are initial green, 
minimum green, maximum green, gap, extension, etc. In the current study, for the on-line 
control under the actuated control system, only maximum green is used as a control 
variable to avoid complexity of the control problem.  However, the procedures can be 
extended to other parameters without difficulty. The signal phase sequences follow the 
conventional NEMA (National Electrical Manufacturers Association) phase as in Figure 
3. Numbers in the figure represents NEMA phase numbers. 
 
In case of pre-timed control, given cycle length, we seek optimal green splits for each 
movement. First, we determine split between approaches (E-W and N-S) based on (total 
or average) delays on critical movements. Then each green split is determined 
proportionally. Figure 3 illustrates the proportional green split model for pre-timed 
signal. In this simple logic, more green time is allocated to the more congested phase. 
 
For the actuated signal control, a similar method is applied for the maximum green 
allocation. Similarly, the maximum green of each phase is recalculated based on  (total or 
average) movement delay and the background cycle length. Unlike the pre-timed case, 
the green time is affected by the gap and the unit extension time, so that the phase can be 
terminated earlier than the allocated maximum green, due to randomness in the traffic 
arrival pattern. 
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Green Split for E-W Green Split for N-S

WBL (1) EBT (2)

WBT(6)EBL(5)

NBL(3)

SBL(7)

SBT(4)

NBT(8)

 

                         Figure 3. Proportional Green Split Model 

The above method uses the current information for determining signal control in the next 
cycle. Although this simple method is used for the on-line adaptation of signal timing 
plan in this study, a more reliable system can also be designed by incorporating more 
complicated adaptive control logic. In feedback control applications, the most widely 
used form for the control algorithm is proportional/integral/derivative (PID) controller. 
Applying PID controller in adaptive signal control, the equation is given below: 
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Where, G(t): current signal parameter for projected time horizon 
             G: bias signal parameter, is assumed to be determined by some off-line analysis 
                  and/or intuition about the historical traffic demand profile. 
             e: system output error, here is the difference of delay time 
             Kc, t1, t2, control parameters 
 
 
5. SIMULATION EXPERIMENTS 
 
5.1 Simulation Scenario 
 
This section compares the performance of the proposed systems via simulation 
experiments. The proposed system has been tested with Paramics, a high performance 
microscopic simulation. In this experiment, we used the on-line adaptive control model 
for both pre-timed signal controller and actuated signal controller. The model provides 
optimal green split every cycle based on the projected delay by movements. For the 
simple model implementation in this paper, we directly applied the estimated delay from 
the current cycle as the basis for determining the parameter settings for the subsequent 
cycle, rather than projecting one. In the experiment, two on-line control logics are applied 
for the green time update: total delay and average delay. A total of six cases is 
experimented and compared. 
 
1) Pre-timed control (PTC) 
2) On-line pre-timed control based on average delay (OPA) 
3) On-line pre-timed control based on total delay (OPT) 
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4) Actuated control (AC) 
5) On-line actuated control based on average delay (OAA) 
6) On-line actuated control based on total delay (OAT) 

 
The study site of the experiment is the intersection of Alton and Irvine Center Drive, 
Irivne, California, an eight phase fully actuated intersection where advanced detectors 
have been instrumented for a test of vehicle re-identification technology. Loop detectors 
are located at 325 ~ 375 feet upstream from the intersection, except for the eastbound 
Alton approach where detectors are located at 800 feet from the intersection. Traffic 
demand data were collected during p.m. peak hours from 4 to 6 p.m. The base signal 
timing plan for the pre-timed control was generated via SYNCHRO off-line signal timing 
optimization, and a set of field control parameters was adopted for the actuated signal 
control in this study.  

 
5.2 Microscopic Simulation Model, Paramics (PARAllel MICroscopic Simulation) 
 
Paramics is a parallel, microscopic, scalable user programmable and computationally 
efficient traffic simulation model (Duncan 1995) that has been used in many applications 
in the ATMIS Testbed (Oh et al., 2000). Individual vehicles are modeled in fine detail for 
the duration of their entire trips, providing comprehensive traffic characteristics and 
congestion information, as well as enabling the modeling of the interface between drivers 
and ITS facilities and strategies. Figure 4 shows Alton/ICD intersection in Paramics. 
 

 
 

Figure 4. Alton/ICD Intersection in Paramics 
 
Paramics provides a framework that allows users to customize many features of the 
underlying simulation model. Access is provided through a Functional Interface or 
Application Programming Interface (API). The capability to access and modify the 
underlying simulation model through API is essential for research. The APIs have a dual 
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role: first to allow researchers to override the simulator’s default models, such as car 
following, lane changing, route choices for instance, and second, to allow an interface to 
complementary modules to the simulator. Complementary modules could be any ITS 
application, such as signal optimization, adaptive ramp metering, incident management 
and so on. In this way, new research ideas can easily be tested using the simulator before 
the implementation in the real world.  
  
All of the signal control strategies employed in this study, including the fixed-time signal 
controller, full-actuated signal controller, and online feedback signal control with 
intersection delay estimation, are coded in Paramics API (Liu et al., 2001).   
 
5.3 Simulation Results 
 
Any new or modified traffic control system should satisfy a goal or set of goals. The 
goals here for the proposed online signal optimization algorithm are to minimize the 
vehicle delay, improve the utilization of intersection capacity and reduce traffic 
congestion. Measures of effectiveness (MOEs) provide a quantitative basis for 
determining the capacity of traffic control system and their strategies to attain the desired 
goals. As described in Section 4.2, we consider two objectives: system efficiency and 
system fairness. For the system efficiency, three measures of effectiveness (MOEs) are 
evaluated: total intersection delay, total throughput, and average delay. The fairness of 
system is measured via standard deviation of movement delays.  
 
Because Paramics is a stochastic simulation model, a Monte Carlo simulation is used to 
measure the system performance. A total of 30 simulation runs, each comprised of a two-
hour period, were conducted for each scenario. As summarized in Table 1, the proposed 
on-line adaptive control outperforms both pre-timed and actuated control. Compared to 
the pre-timed control case, on-line control systems show greater than a 10% reduction in 
average delay. However, the fairness measure, standard deviation of movement delays, 
worsens when the total delay is used for green time update, while the control system with 
the average delay-based update reduces the standard deviation. That is, the average-
delay-based on-line control satisfies both objectives, although the system efficiency is 
slightly lower than that of total delay-based on-line control. 
 
Since the overall performance is averaged based on 30 simulation runs, the performance 
of the system also can be evaluated probabilistically. Figures 5, 6, 7, and 8 depict the 
system performance measures as probability density functions (PDF). As we can see 
from these figures, the average-delay-based on-line control algorithms perform better for 
both pre-timed and actuated signal controls. The standard deviation of the performance 
measure can be regarded as a measure of system stability in real application. In general, 
the pre-timed control systems exhibit greater stability than do the actuated control 
systems, and could be verified easily by the shapes of their PDF as shown in these 
figures. 
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To further detail the performance improvement under a high demand scenario, Figures 9 
and 10 compare changes in average intersection delay during the two-hour simulation 
period, showing significant reduction of the total intersection delay.  
 

Table 1.  Comparison of Overall Performance 
 

Pre-timed Controller Actuated Controller MOEs 
PTC OPA OPT AC OAA OAT 

Total Delay 263.1 238.6 232.1 235.9 238.3 231.4
(hrs) (5.5) (6.7) (4.6) (10.9) (10.5) (9.1)

Throughput 11072.0 11284.4 11057.7 10772.9 11250.3 11011.6
(veh) (98.5) (76.5) (77.0) (116.5) (148.0) (243.0)

Avg. Delay 85.5 76.1 75.6 78.8 76.3 75.7

Efficiency 

(sec/veh) (2.0)  (2.1) (1.4) (3.6) (3.5) (3.9)
Std. of Delays 35.0 30.8 40.4 48.4 31.4 37.8

Fairness 
 (2.4) (4.1) (2.7) (3.2) (3.2) (4.7)

Total Delay - -9.3 -11.8 -10.3 -9.4 -12.0
Throughput - 1.9 -0.1 -2.7 1.6 -0.5
Avg. Delay - -11.0 -11.7 -7.8 -10.8 -11.5

Improve-
ment 
(%) 

Std. of Delays - -11.8 15.4 38.3 -10.2 8.1
Note: Values in (    ) represent standard deviations of 30 simulation runs. 
 
 

 
Figure 5.  Probabilistic Distribution of Efficiency Measure (Pre-timed Control) 
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Figure 6. Probabilistic Distribution of Fairness Measure (Pre-timed Control) 

 
 
 

Figure 7.  Probabilistic Distribution of Efficiency Measure (Actuated Control) 
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Figure 8. Probabilistic Distribution of Fairness Measure (Actuated Control) 

 
 
 
 
 

Figure 9. Comparison of Total Delay at Each Time Step (Pre-timed control) 
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Figure 10. Comparison of Total Delay at Each Time Step (Actuated control) 

 
 
6. CONCLUSIONS AND FUTURE WORK 
 
This paper has dealt with the development of efficient techniques for the dynamic control 
of signalization in traffic networks in the context of Intelligent Transportation Systems. 
This online signal optimization module works as a complementary module to the existing 
signal controller for both pre-timed and vehicle actuated controllers, by providing optimal 
signal timing parameters.  It comprises two main components: real-time delay estimation 
via vehicle re-identification, and on-line signal parameter optimization. We applied the 
on-line adaptive control system to both pre-timed and actuated control, and compared the 
performance of the systems via microscopic simulation model. The simulation 
experiments showed that the proposed adaptive control system could be an efficient 
method even under the application of a simple algorithm for adapting the signal timing 
plan.  

 
Note that the main purpose of this paper is to present an integrated adaptive signal control 
algorithm with vehicle re-identification technologies. Simulation experiments were 
conducted on a single intersection, rather than at the network level. A natural extension of 
local intersection signal control is to address coordination of intersections. Specifically, 
coordination of the proposed adaptive controller is sought in terms of maximizing the 
combined performance of all of the controllers. As addressed in the paper, the 
performance of the system can be improved by employing more complicated control 
logics.  
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ABSTRACT 
 
Dynamic traffic assignment (DTA) has been a topic of substantial research during the 
past decade. While DTA is gradually maturing, many aspects of DTA still need 
improvements, especially regarding its formulation and solution capabilities under the 
transportation environment impacted by the Advanced Transportation Management and 
Information Systems (ATMIS). It is necessary to develop a set of DTA models to 
acknowledge the fact that the traffic network itself is probabilistic and uncertain, and 
different classes of travelers respond differently under uncertain environment, given 
different levels of traffic information. This paper aims to advance the state-of-the-art in 
DTA modeling in the sense that the proposed model captures the travelers’ decision 
making among discrete choices in a probabilistic and uncertain environment, in which 
both probabilistic travel times and random perception errors that are specific to individual 
travelers, are considered. Travelers’ route choices are assumed to be made with the 
objective of minimizing perceived disutilities at each time. These perceived disutilities 
depend on the distribution of the variable route travel times, the distribution of individual 
perception errors and the individual traveler’s risk taking nature at each time instant. We 
formulate the integrated DTA model through a variational inequality (VI) approach. 
Subsequently, we discuss the solution algorithm for the formulation. Experimental results 
are also given to verify the correctness of solutions obtained. 
 
1. INTRODUCTION 
 
Over the past several decades, various traffic assignment models have been developed 
based on whether network attributes are dynamic or time-dependent, whether network 
stochasticity is considered in the travelers’ decision making, and whether travelers’ route 
travel time perception errors are assumed. Following Chen’s classification (1) and 
considering both static and dynamic cases in general, traffic assignment models can be 
categorized as in Table 1.  
 
Table 1. Classification of Traffic Assignment Models 
 

 Accurate Perception Inaccurate Perception 
Deterministic Network  DN-UE DN-SUE Static 
Stochastic Network SN-UE SN-SUE 

                                                 
3This paper has been presented at the 81st Transportation Research Board Annual Meeting, and accepted 
for publication in Transportation Research Record. 
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Deterministic Network DN-DUO DN-SDUO Dynamic 
Stochastic Network SN-DUO SN-SDUO 

 
Where: DN = Deterministic Network 
             SN = Stochastic Network 
             UE = User Equilibrium 
             SUE = Stochastic User Equilibrium 
             DUO = Dynamic User Optimal 
             SDUO = Stochastic Dynamic User Optimal 
 
Among those models in Table 1, the static user equilibrium (UE) models are usually used 
for the long-term planning purpose (2). Most of them are formulated to be consistent with 
the Wardrop’s first principle. This principle requires that, for used routes between a given 
origin-destination (OD) pair, the route cost equals the minimum route cost, and no used 
route has a lower cost. The basic assumption in the UE models is that over some period 
of time, each traveler learns and adapts to the transportation network conditions and the 
services available to him/her so that an equilibrium can be reached. In the DN-UE model, 
no network uncertainty is considered, i.e. link travel times are deterministic and each 
traveler is assumed to have perfect knowledge of the network travel times on all possible 
routes between his/her OD pair. To overcome the deficiencies of the deterministic model, 
DN-SUE model relaxes the assumption of travelers’ perfect knowledge of network travel 
times, allowing travelers to select routes based on their perceived travel times. However, 
given that travel time uncertainty is one of the important factors in route choice as shown 
in a recent empirical study by Abdel-Aty et al. (7), a realistic route choice model should 
capture the tradeoffs between expected travel time and travel time uncertainty in decision 
making. The SN-SUE model falls in this category. 
 
On the other hand, with continuous information and advice from Advanced 
Transportation Management and Information System (ATMIS), static UE may not exist 
but rather the travelers choose routes and modes based on the current perceived condition 
of the traffic on the network (3).  Therefore, the dynamic generalization of the static UE 
concept is called the dynamic user optimal (DUO). One DUO traffic assignment problem 
is to determine vehicle flows at each instant of time on each link resulting from drivers 
using minimal-time routes. Thus, we are no longer considering day-to-day traffic 
equilibrium. Instead, we are trying to influence or control traffic and travel patterns of 
travelers optimally by providing accurate traffic information and effective traffic control 
measures. In a simple DTA model, all users of the network have perfect information on 
the travel times on the network and choose routes which minimize either their travel 
times or some generalized cost. Such a DTA model is typically deterministic. But in real 
life, since one might expect that network travel times for a given set of flows are 
stochastic in nature and also the travelers may not have perfect information about the 
network, the deterministic assumptions are questionable.  
 
A large body of work is available on stochastic user equilibrium models. Dial was among 
the first to present the algorithm to assign link flows based on a logit model and later this 
stochastic user equilibrium model on deterministic networks (DN-SUE) was formulated 
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as an optimization problem (4). In the generalized SN-SUE model (5), proposed by 
Mirchandani and Soroush, the travel time on each route is random and each traveler 
perceives inaccurately. Thus, the perceived distribution of travel times for each traveler is 
a function of the actual distribution of the network travel times as well as the distribution 
of the traveler’s own perception error.  Furthermore, because it is assumed that travelers 
are aware of the variable nature of travel times on the network, the decision making 
process involved in choosing a route is assumed to represent risk taking behavior under 
uncertainty.  Since route choice decisions usually involve tradeoffs between expected 
travel time and travel time uncertainty, Tatineni indicated that it may be appropriate to 
model travelers as either risk averse, risk prone or risk neutral, and the risk in this case is 
the variability associated with route travel times (6). Chen and Recker examined the 
effect of considering risk taking behavior in static route choice models and its impact on 
the estimation of travel time reliability of a road network subject to demand and supply 
variations (1).  
 
In order to realize the real-time traffic network monitoring and management function in 
ATMIS, a SN-SDUO model that captures travelers’ route choice behavior in a dynamic 
and stochastic transportation network needs to be developed. In this model, it is essential 
to understand how drivers make route choices, especially in the light of the considerable 
information that the driver may receive within ITS environment, such as variable 
message signs (VMS), highway advisory radio (HAR), and in-vehicle navigation 
systems, etc. Along with the driver’s prior knowledge of the traffic network, such a 
model, as shown in Figure 1, should replicate, to the extent possible, the driver’s 
perception of available routes and his or her decision-making in selecting the routes. 
Based on different assumptions on the distributions of actual route travel time and 
perceived route travel time error, various DTA models can be obtained. Most of current 
stochastic DTA models consider either a stochastic route travel time without traveler 
perception error such as Boyce’s model (8) or deterministic network with traveler 
perception error such as Ran’s model (9), but not both. To our knowledge, no SN-SDUO 
model has been proposed in the literature.  
 

Cognitive Model
DTA Model
SN-SDUO

Traffic Network
and Conrol

Travel
Advisories

and
Traffic

Information

Dynamic
Stochastic

Actual
Travel Times

Perceptions

Predicted
Traffic

 



 30

 

Figure 1. DTA Model with Probabilistic Travel Time and Perceptions 

 
The objective of this paper is to propose a formulation and solution algorithm for the SN-
SDUO model, which is a stochastic dynamic user optimal model based on stochastic 
dynamic network. This paper extends Mirchandani and Soroush’s generalized traffic 
equilibrium (5) into a dynamic environment. The assumption is that route travel times are 
variable and perceived as such by travelers at each time instant. Each traveler uses a 
disutility function of travel time to evaluate each route and route choices are assumed to 
be made with the objective of minimizing perceived disutility at each time and no traveler 
can reduce his/her perceived expected disutility by changing to another route. These 
perceived disutilities depend on the distribution of the variable route travel times, the 
distribution of individual perception errors, and the individual traveler’s risk taking 
nature at each time. By considering the traveler’s risk-taking behavior in dynamic and 
probabilistic environment, the proposed model can capture the traveler’s route choice 
characteristics such that a trade-off decision between a route with longer but reliable 
travel time versus another route with shorter but unreliable travel time. 
 
This paper is organized as follows. The dynamic user-optimal route choice conditions are 
formulated and then a variational inequality (VI) is derived in Section 2. Traveler’s 
perception under dynamic and stochastic network, the stratification of traveler’s risk-
taking behavior, and the route choice characteristics of these traveler classes will also be 
discussed in this section. In Section 3, we discuss an algorithm that can solve the VI 
formulation via a combination of relaxation technique, stochastic network loading, and 
Method of Successive Averages (MSA). Section 4 contains some computational results 
of applying the proposed approach to several simple scenarios, with the objective of 
verifying solution qualities. Finally, concluding remarks are discussed in Section 5.  
 
2. THE VARIATIONAL INEQUALITY FORMULATION 
 
2.1 Notation  
 
In the following, superscript “rs” denotes origin-destination pair rs, subscript “a” (or 
“b”) denotes link a (or b), subscript “p” (or  “ ~p ”) denotes path p (or subpath ~p  between 
node j and destination s), and subscript “m” denotes traveler class m.  All the variables 
used in the formulation are defined as follows: 
xa(t) =     number of vehicles on link a at time t (main problem variable) 
ua(t) =     inflow rate into link a at time t (main problem variable) 
va(t) =     exit flow rate from link a at time t (main problem variable) 
ya(k) =     number of vehicles on link a at the beginning of time interval k (subproblem 

variable) 
)(ˆ ky i

a   =     number of vehicles on link a at the beginning of time interval k at iteration i 

(stochastic loading loop) 
pa(k) =     inflow into link a during interval k (subproblem variable) 

)(ˆ kpi
a   =      inflow into link a during interval k at iteration i (stochastic loading loop) 
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qa(k) =      exit flow from link a during interval k (subproblem variable) 
)(ˆ kqi

a  =      exit flow from link a during interval k at iteration i (stochastic loading loop) 

f tm
rs ( )  =      class m departure flow rate from origin r to destination s at time t (given) 

f tpm
rs ( )  =      class m departure flow on path p from origin r to destination s at time t 

ers(t) =      arrival flow rate from origin r toward destination s at time t 
Ers(t) =      cumulative number of vehicles arriving at destination s from origin r by time 

t (main problem variable) 

E k
rs

( )  =      cumulative number of vehicles arriving at destination s from origin r during 
interval k (subproblem variable) 

A(j) =      set of links whose tail node is j (after j) 
B(j) =      set of links whose head node is j (before j) 
P tp

rs( ) =      proportion of flows between (r,s) that follow route p at time t 

ta(t) =      actual travel time over link a for flows entering link a at time t 
t a t( )  =      estimated mean actual travel time over link a for flows entering link a at 

time t 
Ta(t) =       perceived travel time over link a for flows entering link a at time t 

)(tph  =       actual travel time for route p between (r, s) for flows departing origin r at 

time t 
)(tpW  =       perceived travel time for route p between (r, s) for flows departing origin r 

at time t 
)(tpx  =        perceived travel time error for route p between (r, s) for flows departing 

origin r at time t 
Rrs(t) =          the set of path between (r, s) at time t 
p rs t( )  =       minimal disutility between (r, s) for flows departing origin r at time t 

DU tp
rs ( )  =    perceived disutility for route p between (r,s)  for flows departing origin r at 

time t 
 
2.2 Traveler’s Perceptions Under Dynamic and Stochastic Network 
 
Consider a traffic network represented by a directed graph consisting of a finite set of 
nodes and links. We assume that the travel times for traversing the links in the network 
are random variable and the probability density functions (PDF) of link travel times are 
dependent on the time when a link is entered.  Therefore, the link travel time ta(t) can be 
modeled as a stochastic process. The stochasticity of the link travel time for a given set of 
flows on the traffic network could be resulted from different sources such as different 
weather conditions, different mix of vehicle types, and different delays experienced by 
different vehicles at intersections, etc. Incidents, such as vehicle breakdowns and signal 
failure, also contribute to the random effects of the traffic network. A network where the 
link travel time is modeled as a stochastic process is referred to as a dynamic and 
stochastic network (10).  
 
The accuracy of a traveler perception of the network depends on the traveler’s pervious 
experience during similar network flow conditions and information available to the 
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traveler from various sources such as travel time updates via radio, television, internet or 
advanced traveler information systems. In reality, travelers may have either or both 
imperfect information and different perceptions towards travel time rather than perfect 
information and homogeneous perceptions.  
 
Let there be M different groups of travelers, where the travelers of each group have the 
same disutility function and same perception error distribution. In this paper, we assume 
that each traveler i from group m perceives the travel time on link a of route p at time t as 
a distribution comprising of the distribution of actual link travel time )(tat  and a 

perception error )(tim
ax , whose distribution parameters are specific to traveler i.  

 
misrtRppatttT rsim

aa
im

a ,,,   ),(   ,),()()( "ŒŒ+= xt                       (1) 

 
Assume route p consists of nodes (r, 1, 2, …,s). Then, a recursive formula for the 
perceived route travel time )(trs

pW  is: 

)()()()( 1111 tTttt rrrr
p =+=W xt                                                                                         (2) 

… 
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where link a = (j-1, j).  Theoretically, we will have: 
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Equation (4) shows that the perceived route travel time is a random variable where the 
parameters of its associate probability density function (PDF) are dependent on the 
distribution of traveler’s perception error as well as on the distribution of actual route 
travel time. Depending on the level of available travel time information (this includes 
traveler’s previous knowledge) at different time period, the distribution of traveler 
perception error may vary dynamically. This in itself requires extensive empirical 
investigation; and the distribution may not be able to be represented by an algebraic 
function even after that. To make the model somewhat tractable, the following 
assumptions are made in this paper.  
 
Assumption 1: At time instant t, the perceived error )(timx of an individual i from group 

m for a segment of road with unit travel time has normal distribution ))(),(( ttN imim qm . 

The parameters )(timm  and )(timq are dependent on the level of travel time information 
available to the traveler at time t. Therefore, we also assume: 

)),(()( ttInfoft imimim mm =                                                                                                 (5) 

)),(()( ttInfogt imimim qq = .                                                                                                 (6) 

Here, )(tInfoim represents the available travel time information to the traveler i from group 

m at time t, f and g are functional relationships. The parameters imm  and imq for a random 

individual i from group m have normal distribution ),0( mN t and gamma distribution 



 33

),( mmG ba  over the population, respectively. Here, mt , ma and mb are some constant 
values which are specific to group m. 
 
Assumption 2: An individual’s perceived errors are independent for non-overlapping 
route segments and mutually independent over the population of travelers.  
 
Using equation (5) and (6), an individual traveler’s perception error under different 
ATMIS scenarios can be modeled, for example, different functional relatetionships f and 
g can be used for the link with or without VMS control. Equation (5) and (6) can aslo 
capture the temporal correlation in traveler’s perception error since the same tripmaker is 
likely to perceive travel time in a similar way from one instant to the next.  
 
As shown by Mirchandani and Soroush (5), the moment generating function (MGF) of 
percived link travel time will be used in the following section to calculate the disutility 
functions. Based on Equation (1), the percieved link travel time equals the sum of actual 
link travel time and traveler’s perception error, the MGF of the percieved link travel time 
can be expressed as follows: 

][)]2/)()(1([)( )()()(
AMtstsMsM t

imim
ttT aa

im
a

tt qm =++=                                                   (7) 

Here, we set )2/)()(1( tstsA imim qm ++= .                                                                       (8)     
 
If we assume that the actual link travel time ta(t) is a non-negative continuous or discrete 
random variable with probability density function )(ta

ft , and for the ease of 

representation, let τ be the possible value that can be attained for the link travel time, the 
MGF of the perceived link travel time in Equation (7) becomes:  

ttt tt dfAAMsM tttT aa
im

a
)()exp(][)(

0 )()()( ∫
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==                                                               (9) 
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2.3 Traveler’s Risk Taking Behavior 
 
In everyday life, we frequently acknowledge that people have differing attitudes to risk. 
The shape of a utility or disutility function models a decision maker’s attitude to risk. To 
model different types of risk taking behavior of traveler, we take the stochasticity of route 
travel time as the risk associated when travelers choose routes. On the basis of the 
perceived distribution of network travel times, travelers are assumed to behave differently 
when choosing routes which are probabilistic. Some are risk averse, choosing routes with 
longer expected travel times but lower variations. Others, the risk takers, may choose 
routes with shorter expected travel times but higher variations in travel time reliability.  
 
In this paper, travelers are stratified into three classes (6), depending on their route choice 
behavior: (i) risk averse travelers; (ii) risk prone travelers; and (iii) risk neutral travelers. 
Different disutility functions are established for each class to reflect its risk-taking 
behavior and perceived disutilities from these functions are a function of the distribution 
of the variable route travel times, the distribution of individual perception errors, and the 
individual traveler’s risk taking nature at each time. By the definitions of these disutility 
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functions, risk averse traveler would tend to choose routes with low expected variance of 
travel time, and risk prone traveler would prefer routes with highly variable travel times 
in an effort to shorten the journey time. 
 
Following the study by Tatineni et al. (6), we also use the exponential disutility function, 
which is one of the most widely used disutility functions reported in the decision-making 
literature to model the different risk taking behaviors. The shapes of these different risk 
taking behaviors are provided in Figure 2.  

Figure 2. Disutility Functions for Different Risk-Taking Route Choice Models  
 
To calculate the perceived expected disutility functions, the perceived route travel time is 
needed. A naive approach is to enumerate all paths, derive the PDF of the perceived 
travel time of these paths, and then compute the corresponding perceived expected 
disutilities. However, this could take considerable computational effort for even a small 
network. One important advantage of using the exponential function is that the disutility 
associated with a route can be estimated by summing the link disutilities on that route. 
This allows the classical Dijkstra-type shortest path algorithm to be used in finding the 
minimum expected disutility route.  As discussed by Mirchandani and Soroush (5), the 
MGF of perceived route travel time in Equation (7) and (8) could be used to calculate the 
expected disutility functions, without the requirement of path enumeration. We present 
the results in the following. In all cases, we assume that a route with 0 minutes travel 
time has a disutility of 0 and a route with 5 minutes travel time has a disutility of 1. 
Assume route p from origin r to destination s consists of j intermediate nodes, j= (1, 2, 
…,s), and link a = (j-1, j) is on the route p. 
 
For the risk averse case, the disutility function of a risk averse person takes the form of:  

21 ))(exp()( atatDU rs
p

rs
p -W= a              (11) 

The perceived expected disutility function is: 
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pa

ttT

rs
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Œ
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With the boundary conditions and the risk averse assumption, the disutility function and 
the perceived expected disutility function finally have the forms of: 
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)1))(289.0(exp(309.0)( -W= ttDU rs
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p             (13) 
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For the risk prone case, the disutility function of a risk prone person takes the form of:  

))(exp()( 12 tbbtDU rs
p

rs
p W--= b                       (15) 

The perceived expected disutility function is: 
)())((
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With the boundary conditions and the risk averse assumption, the disutility function and 
the perceived expected disutility function finally have the forms of: 

)))(289.0exp(1(309.1)( ttDU rs
p

rs
p W--=            (17) 

))289.0(1(309.1))((
))(( )1( --= ’

Œ
W+ -

pa
ttT

rs
p jr

pa
MtDUE                                                        (18) 

 
For the risk neutral case, the disutility function is a linear function with the expected 
perceived travel time. For the ease of modeling, we use exponential form to approximate 
linear disutility function. Therefore, the disutility function of a risk neutral person takes 
the form of:  

))(exp()( 12 tcctDU rs
p

rs
p W--ª g                                                                              (19) 

The perceived expected disutility function is: 
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With the boundary conditions and the risk neutral assumption, the disutility function and 
the perceived expected disutility function finally have the forms of: 
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For comparison purpose, note that risk neutral travelers make route choice decisions 
based on the mean perceived route travel times solely, regardless the variance of 
perceived route travel times.  Essentially, risk neutral travelers consider the route travel 
time as deterministic in the sense that all routes have the mean travel times. So if we 
assume that all travelers are risk neutral, our SN-SDUO model becomes DN-SDUO.  
 
2.4 The Dynamic Network Constraint Set 
 
The constraint set for our DTA problem is summarized for each class of travelers. 
 
Route Flow Assignment Constraints: 
f t f t P t where f t is given r s p mpm

rs
m
rs

p
rs

m
rs( ) ( ) ( ) ( ) , , , ;= "     (23) 

f t u t r s p m a A r a ppm
rs

apm
rs( ) ( ) , , , ; ( ); ;= " Œ Œ      (24) 
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Other Constraints for all traveler classes: 
Relationship between state and control variables: 

dx

dt
u t v t m a p r sapm

rs

apm
rs

apm
rs= - "( ) ( ) , , , ,       (25) 

dE t

dt
e t p m r s rpm

rs

pm
rs( )

( ) , , ;= " π        (26) 

Flow conservation constraints: 
v t u t j p m r s j r sapm
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Flow propagation constraints: 
x t x t t x t E t t E t a B j j r p r sap
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a
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Definitional constraints: 
u t u t v t v t x t x t aapm

rs
a

rspm
apm
rs

a apm
rs

a
rspmrspm

( ) ( ), ( ) ( ), ( ) ( ),= = = "∑ ∑∑     (30) 

Nonnegativity conditions: 
x t u t v t m a p r sapm

rs
apm
rs

apm
rs( ) , ( ) , ( ) , , , , ,≥ ≥ ≥ "0 0 0      (31) 

f t e t E t p m r spm
rs

pm
rs

pm
rs( ) , ( ) , ( ) , , , ,≥ ≥ ≥ "0 0 0      (32) 

Boundary conditions: 
E p m r spm

rs ( ) , , , ,0 0= "         (33) 

x a p m r sapm
rs( ) , , , , ,0 0= " .        (34) 

For each class of travelers, the constraints expressed in (23) - (34), including flow 
propagation and conservation constraints, are applicable. These constraints are used to 
generate path and link flows when route departure flows are determined. The path 
departure flow f tp

rs ( )  is determined by the stochastic loading function. The link flow 

propagation constraints (29) are implemented for each link a, each route p, each O-D pair 
rs, and each time t, regardless of traveler classes. Therefore, the FIFO requirement can be 
ensured. 
 
2.4 Link Travel Time and Delay Functions 
 
Since a stochastic network is considered in this paper, variation of the link travel time 
should be required. Thus, in this paper, the actual link travel time ta(t) has two 
components: one is deterministic flow-dependent cruise time ca(t) and the other one is the 
stochastic delay da(t). The stochastic delay may be caused by the traffic signal at the 
intersection for an arterial link or by the congestion for a freeway link.  
 
There are various cruise time functions for different link types, such as freeway and 
arterial. To simplify the computation, it is assumed that the cruise time depends on the 
number of vehicles and the inflow rate. Equation (35) shows the link cruise time function 
chosen for the numerical results of this study: 
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where a  and b  are coefficients, Ta f,  is the free flow travel time on link a, Ca is its 

capacity, and xa,max is its maximum holding capacity.  
 
In this paper, to simplify our algorithm, the stochastic delay is modeled as a non-negative 
normal distribution, which relates directly to the cruise time of this link, as shown in 
Equation (36). 

),( 2
aaaaa ccNd sm=           (36) 

where am  is the mean parameter and 2
as is the variance parameter. 

 
2.5 The VI Formulation 
 
Assume travelers are disutility minimizers. The probability that route p is chosen by an 
individual can be stated as follows: 

))),(())(((Prob)( tDUEtDUEtP rs
q
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p £= " route q between r and s, "r, s, p.           (37) 

where Prob is the choice function representing the proportion of individuals who choose 
route p. The DUO route choice conditions are then defined as follows: 
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For each path  p and each O-D pair rs, define an auxiliary cost term as follows: 
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It is obvious that the above equality states the DUO route choice conditions, since 
∂h ∂p

rs
p
rst f t( ) / ( ) > 0 . As shown in (11), the above system of equations is equivalent to the 

following variational inequality for each time instant t Œ +•[ , )0 : 

F t f t f tp
rs

p
rs

prs
p
rs( ){ ( ) ( )}*- ≥∑∑ 0        (41) 

where superscript * denotes that path departure flow f has an optimal value. Since 
F tp

rs ( ) = 0 , the above inequality is also equivalent to the integral form: 
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3.   THE SOLUTION ALGORITHM 
 
To solve the VI problem, we need to convert our continuous time VI problem into a 
discrete time VI problem. The time period [0,T] is subdivided into K small time intervals. 
Each time interval is regarded as one unit of time. Then, ua(k) represents the inflow into 
link a during interval k, va(k) represents the exit flow from link a during interval k, x ka ( )  
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represents the number of vehicles at the beginning of interval k, and fp(k) represents the 
departure flow from path p during interval k. 
 
This discrete VI can be solved by using a combination of relaxation, stochastic network 
loading and Method of Successive Averages (MSA) techniques. In this combined 
algorithm, we define the travel time approximation procedure (relaxation) as the outer 
iteration and the MSA procedure as the inner iteration. For each relaxation (or 
diagonalization) iteration, we temporarily fix actual travel time t a k( )  in link flow 
propagation constraints as t a k( ) .  
 
The algorithm for solving our proposed DTA model can be summarized as follows: 
 

Step 0:  Initialization. Initialize all link flows { } { } { }x k u k v kam am am
( ) ( ) ( )( ) , ( ) , ( )0 0 0  to zero and 

calculate initial time estimates t a k( )( )1 , regardless of traveler classes. Set the outer 
iteration counter l=1. 
Step 1:  Relaxation. Set the inner iteration counter n = 1. Find a new approximation of 

actual link travel times: ( )t ta
n

ak x k( ) (*)( ) ( )= , where (*) denotes the final solution 

obtained from the most recent inner problem.  Solve the route choice program for the 
main problem using stochastic network loading and method of successive averages.  
 [Step 1.1]: Subproblem - Stochastic Dynamic Network Loading.  Perform Monte 
Carlo simulation by sampling random link travel times, calculate corresponding link 
disutilities. Compute minimal disutility paths and assign all departure flows f krs ( )  to 

these routes during each Monte Carlo iteration. Let the temporary link flow vector 

resulted from the all-or-nothing loading be called ( )$ , $ , $p q yi i i  at Monte Carlo iteration i. 

Then, the stochastic dynamic network loading is solved by the following recursive 
equations:  
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Set i = i + 1. As i equals a prespecified number, stop. The vector (pi,qi,yi) is used as the 
converged link flows at inner iteration n. 
 [Step 1.2]: Method of Successive Averages.  Using the predetermined step size 
1/n, yield a new MSA main problem solution through the following equations: 
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If n equals a prespecified number, go to step 2; otherwise n = n+1, and go to step 1.1. 
  



 39

Step 2: Convergence Test for the Outer Iterations. If D<=- - )()( )1()( kk l
a

l
a tt , stop. The 

current solution { } { } { }u k v k x ka a a( ) , ( ) , ( )  is in a near optimal state; otherwise, set l=l+1 

and go to step 1. D  is the pre-defined threshold. 
 
 The algorithm is shown in Figure 3. The number of inner iterations n and the 
number of outer iterations l are correlated. If we set l large, then n should be set small and 
vice versa. The computational convergence of this proposed solution algorithm deserves 
further study.  
 

Compute Flow Related Parameters

 Sample Individual Perception Errors 
 Sample and Compute Travel Time for Each link
 Compute Disutilities for Each Link 

Find Shortest Paths and Perform AON Loading 

Average Link Flows with Flows from Early Iterations 

Is Stochastic Loading Complete?

Average Flows with Flows from Previous MSA Iterations 

Are MSA Iterations Complete? 

Yes 
No 

II 

I 

I: MSA Iterations 
II: Stochastic Loading Loop

Initial Flow from Initial Incremental Assignment 

Yes 
No 

Converge? 

Final Result Output 

Yes No 

 

Figure 3. Solution Algorithm Flow Chart 
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4. EXPERIMENTAL RESULTS 
 
In this section, we present some numerical results from our experiments for a small test network using the 

proposed SN-SDUO model. The objective here is not to illustrate or discuss the network performance 
as a function of mixed vehicle class, but merely to demonstrate solution quality. The test network is 
indicated in Figure 4 with seven nodes and eight links. The length of each link is 2.5 miles. Detailed 
link characteristics are shown in Table 2. Four scenarios, as listed in Table 3, are designed to 
demonstrate that the algorithm produces results that are consistent with the definitions of SN-SDUO 
route choices. Especially, the results from the 100% risk neutral travelers should be same with that 
from the DN-SDUO model. The scenarios are deliberately chosen to be simple so that one can verify 
the results easily. These four scenarios share the following common input characteristics: 

 Origin is node 1 and destination is node 2. 
 The O-D flows are 15 vehicles for each of the five 60-second periods (equivalent to a 

flow of 900 vehicles per hour). The total flows from Origin to Destination for the 
whole analysis period is 75. 

 Free flow speed is 50 miles per hour. 
 The delay distribution for link a is ),( 2sm aa ccN , where ac  is the deterministic flow-

dependent cruise time for link a. m  and 2s for each link are listed in Table 4 and 
shown in Figure 3. 

 3,2,1,01.0,5.0,012.0 ==== mmmm bat  
 The D  threshold specifying the desired accuracy was set to 0.01. 
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Figure 4. Experimental Network 

 
Table 2. Link Information 

Link 
Number 

Start Node End Node Length 
(miles) 

Capacity 
(# of Vehi.) 

# of Lane 

1 1 3 2.5 2200 1 
2 1 4 2.5 2200 1 
3 3 5 2.5 2200 1 
4 4 5 2.5 2200 1 
5 5 6 2.5 2200 1 
6 5 7 2.5 2200 1 
7 6 2 2.5 2200 1 
8 7 2 2.5 2200 1 

Table 3. Distinctive Features of Four Scenarios 
 

Scenarios Distinctive features 
1 100% Risk Averse Traveler 
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2 100% Risk Prone Traveler 
3 100% Risk Neutral Traveler 
4 1/3 for each group 

 
Table 4. Parameters of Intersection Delay for Each Link 

 
Link Number Mean( )m  Variance( 2s ) 

1 0.2 0.5 
2 0.2 0.2 
3 0.2 0.2 
4 0.2 0.2 
5 0.3 0.2 
6 0.35 0.5 
7 0.2 0.2 
8 0.2 0.2 

 
To better present the results, we accumulate the number of vehicles passing through each 
link for the entire analysis period as shown in Figure 5 to Figure 8. These numbers could 
be verified by the time-dependent results for each link at every time interval shown as 
Table 5 to Table 8 in the appendix. Since the flow from origin 1 will go to node 5 and 
then reach destination 2, we can divide the network into two parts at node 5 and analyze 
them separately. Thus, links 1, 2, 3, 4 compose a sub-network and links 5, 6, 7, 8 
compose another sub-network. Here we call them L-Network and R-Network, 
respectively. 
 
In scenario #1, we have one group of travelers who are risk averse and their disutility 
function is expressed as formulation (11). For the L-Network, the intersection delay for 
each of the links follows normal distribution )2.0,2.0( aa ccN except link 1 which has a 

larger variance (0.5). Since the risk-averse travelers prefer route with smaller travel time 
variance if the means are identical, the number of travelers choosing route 1->4->5 
should be more than those choosing route 1->3->5. Consequently, our algorithm assigned 
58.1% (43.58 out of 75) and 41.9% (31.42 out of 75) of the total flows to these two 
routes, respectively. The reason that nearly 42% percent travelers still chose route 1->4-
>5 is because of the perception errors. For the R-Network, the intersection delay for each 
of the links follows normal distribution )2.0,2.0( aa ccN except links 5 and 6. As we have 

expected, 63.5% (47.64 out of 75) of the total travelers chose route 5->6->2 due to the 
smaller mean and variance of the intersection delay for link 5 (0.3 and 0.2, respectively) 
compared with link 6 (0.35 and 0.5, respectively).  
 
In scenario #2, suppose that we have only risk-prone travelers who will prefer route with 
larger disutility variance given that the means are the same. Our algorithm assigned 
60.7% of the travelers to route 1->3->5 and 39.3% to route 1->4->5 for the L-Network. 
At the same time, for the R-Network, it assigned 47.5% of the total travelers to route 5-
>6->2 and 52.5% to route 5->7->2. Note that, although link 6 has a larger mean (0.35) 
than link 5 (0.3), more travelers still chose route 5->7->2 because of the much larger 
variance that link 6 (0.5) has when compared with link 5 (0.2). 
 



 42

We consider the risk-neutral travelers in scenario #3. They will choose route mainly 
based on the mean of the route disutility. Therefore, our algorithm assigned the flows 
almost evenly to route 1->3->5(50.1%) and route 1->4->5(49.9%) because each of the 
four links (1,2,3,4) has the same mean (0.2). Meanwhile, for the R-Network, the mean of 
link 5 is smaller than that of link 6, more travelers should choose route 5->6->2 instead of 
route 5->7->2. This is exactly what our algorithm indicates: it assigned 55.8% of the total 
travelers to route 5->6->2 and 44.2% to route 5->7->2.  
 
In scenario #4, travelers are consisted of all the three kinds of trip-makers evenly. 
Because the number of risk-averse travelers is just the same as that of risk-prone 
travelers, the risk-taking behavior of these two groups will counteract with each other to a 
great extent. Thus, the aggregated route-choice behavior of all the travelers in this 
scenario should be similar with scenario 3 in which all travelers are risk-neutral. As 
expected in this scenario, 50.6% and 49.4% travelers are assigned to route 1->3->5 and 
route 1->4->5, respectively for the L-Network, due to identical disutility mean of the four 
links (0.2). Whereas, a little bit more travelers (58.0%) are assigned to route 5->6->2 for 
the R-Network due to the smaller mean of link 5 than that of link 6. 
 
The above analysis of experimental results from four distinctive scenarios demonstrates 
that our proposed analytical DTA model can fulfill the objectives of SN-SDUO, and 
produce realistic and reasonable dynamic traffic flow assignment for travelers traversing 
on a dynamic and stochastic network with different risk-taking behavior.  
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Figure 5. Results from Scenario #1 
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Figure 6. Results from Scenario #2 
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Figure 7. Results from Scenario #3 
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Figure 8. Results from Scenario #4 

 
5. CONCLUDING REMARKS 
 
In this paper, we presented an analytical approach to formulate a dynamic traffic 
assignment model, which capture travelers’ route choice behavior in a dynamic and 
stochastic network. Each traveler chooses a “perceived optimal route” which minimizes 
the perceived expected disutility of travel time from his origin node to his destination 
node. Our proposed model incorporates travelers’ risk-taking behavior since the traffic 
network under consideration is stochastic. We take the stochasticity of route travel time 
as the risk associated when travelers choose routes. In this DTA model, three kinds of 
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risk-taking behavior are taken into consideration: (i) risk averse case, (ii) risk prone case, 
and (iii) rise neutral case. Through a variational inequality formulation, they are 
integrated into one modeling framework. We proposed a solution algorithm by 
combining a relaxation approach, stochastic network loading and method of successive 
averages. Four scenarios were tested to gain some computational experiences of the 
algorithm and to verify the solutions obtained. 
 
The eventual goal of this effort is to develop an analytical model that can be used to 
examine issues and evaluate various strategies in ATMIS.  A larger network consisting of 
both freeway links and arterial links will be used to test the model and the correctness of 
results will be verified in the subsequent papers. Since our model allows for the 
possibility that travelers may have either or both imperfect information and different 
perception towards probabilistic and uncertain travel time, it can be used to model the 
driver’s perception of available routes and his or her decision-making in selecting routes 
under dynamic and stochastic environment, especially in the light of the considerable 
information that the driver may receive within ITS environment, such as variable 
message signs, highway advisory radio, in-vehicle navigation systems and other 
telematics devices.  Since different information devices may have different coverage of 
traffic information and therefore may have different impact on traveler's route choice 
decision process, we will investigate and incorporate different information devices in our 
modeling framework for future research. 
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Appendix:  
Table 5. Time-Dependent Flow for Scenario #1 (100% Risk Averse) 

 
Time Interval Link Flow 

1 1 -> 3 5.9 
1 1 -> 4 9.1 
2 1 -> 3 11.84 
2 1 -> 4 18.16 
3 1 -> 3 17.37 
3 1 -> 4 27.63 
4 1 -> 3 18.87 
4 1 -> 4 26.13 
4 3 -> 5 5.9 
4 4 -> 5 9.1 
5 1 -> 3 19.58 
5 1 -> 4 25.42 
5 3 -> 5 11.84 
5 4 -> 5 18.16 
6 1 -> 3 14.05 
6 1 -> 4 15.95 
6 3 -> 5 17.37 
6 4 -> 5 27.63 
7 1 -> 3 6.64 
7 1 -> 4 8.36 
7 3 -> 5 18.87 
7 4 -> 5 26.13 
7 5 -> 6 9.23 
7 5 -> 7 5.77 
8 3 -> 5 19.58 
8 4 -> 5 25.42 
8 5 -> 6 18.83 
8 5 -> 7 11.17 
9 3 -> 5 14.05 
9 4 -> 5 15.95 
9 5 -> 6 28.81 
9 5 -> 7 16.19 
10 3 -> 5 6.64 
10 4 -> 5 8.36 
10 5 -> 6 29.11 
10 5 -> 7 15.89 
10 6 -> 2 9.23 
10 7 -> 2 5.77 
11 5 -> 6 28.81 
11 5 -> 7 16.19 
11 6 -> 2 18.83 
11 7 -> 2 11.17 
12 5 -> 6 18.83 
12 5 -> 7 11.17 
12 6 -> 2 28.81 
12 7 -> 2 16.19 
13 5 -> 6 9.3 
13 5 -> 7 5.7 
13 6 -> 2 29.11 
13 7 -> 2 15.89 
14 6 -> 2 28.81 
14 7 -> 2 16.19 
15 6 -> 2 18.83 
15 7 -> 2 11.17 
16 6 -> 2 9.3 
16 7 -> 2 5.7 
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Table 6. Time-Dependent Flow for Scenario #2 (100% Risk Prone) 
 

Time Interval Link Flow 
1 1 -> 3 9.63 
1 1 -> 4 5.37 
2 1 -> 3 19.24 
2 1 -> 4 10.76 
3 1 -> 3 27.39 
3 1 -> 4 17.61 
4 1 -> 3 26.59 
4 1 -> 4 18.41 
4 3 -> 5 9.63 
4 4 -> 5 5.37 
5 1 -> 3 26.28 
5 1 -> 4 18.72 
5 3 -> 5 19.24 
5 4 -> 5 10.76 
6 1 -> 3 18.13 
6 1 -> 4 11.87 
6 3 -> 5 27.39 
6 4 -> 5 17.61 
7 1 -> 3 9.3 
7 1 -> 4 5.7 
7 3 -> 5 26.59 
7 4 -> 5 18.41 
7 5 -> 6 6.98 
7 5 -> 7 8.02 
8 3 -> 5 26.28 
8 4 -> 5 18.72 
8 5 -> 6 13.78 
8 5 -> 7 16.22 
9 3 -> 5 18.13 
9 4 -> 5 11.87 
9 5 -> 6 20.23 
9 5 -> 7 24.77 
10 3 -> 5 9.3 
10 4 -> 5 5.7 
10 5 -> 6 21.52 
10 5 -> 7 23.48 
10 6 -> 2 6.98 
10 7 -> 2 8.02 
11 5 -> 6 21.87 
11 5 -> 7 23.13 
11 6 -> 2 13.78 
11 7 -> 2 16.22 
12 5 -> 6 15.42 
12 5 -> 7 14.58 
12 6 -> 2 20.23 
12 7 -> 2 24.77 
13 5 -> 6 7.16 
13 5 -> 7 7.84 
13 6 -> 2 21.52 
13 7 -> 2 23.48 
14 6 -> 2 21.87 
14 7 -> 2 23.13 
15 6 -> 2 15.42 
15 7 -> 2 14.58 
16 6 -> 2 7.16 
16 7 -> 2 7.84 
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Table 7. Time-Dependent Flow for Scenario #3 (100% Risk Neutral) 
 

Time Interval Link Flow 
1 1 -> 3 7.78 
1 1 -> 4 7.22 
2 1 -> 3 15.71 
2 1 -> 4 14.29 
3 1 -> 3 23.05 
3 1 -> 4 21.95 
4 1 -> 3 22.48 
4 1 -> 4 22.52 
4 3 -> 5 7.78 
4 4 -> 5 7.22 
5 1 -> 3 21.87 
5 1 -> 4 23.13 
5 3 -> 5 15.71 
5 4 -> 5 14.29 
6 1 -> 3 14.52 
6 1 -> 4 15.48 
6 3 -> 5 23.05 
6 4 -> 5 21.95 
7 1 -> 3 7.32 
7 1 -> 4 7.68 
7 3 -> 5 22.48 
7 4 -> 5 22.52 
7 5 -> 6 8.31 
7 5 -> 7 6.69 
8 3 -> 5 21.87 
8 4 -> 5 23.13 
8 5 -> 6 16.34 
8 5 -> 7 13.66 
9 3 -> 5 14.52 
9 4 -> 5 15.48 
9 5 -> 6 24.76 
9 5 -> 7 20.24 
10 3 -> 5 7.32 
10 4 -> 5 7.68 
10 5 -> 6 24.9 
10 5 -> 7 20.1 
10 6 -> 2 8.31 
10 7 -> 2 6.69 
11 5 -> 6 25.52 
11 5 -> 7 19.48 
11 6 -> 2 16.34 
11 7 -> 2 13.66 
12 5 -> 6 17.1 
12 5 -> 7 12.9 
12 6 -> 2 24.76 
12 7 -> 2 20.24 
13 5 -> 6 8.65 
13 5 -> 7 6.35 
13 6 -> 2 24.9 
13 7 -> 2 20.1 
14 6 -> 2 25.52 
14 7 -> 2 19.48 
15 6 -> 2 17.1 
15 7 -> 2 12.9 
16 6 -> 2 8.65 
16 7 -> 2 6.35 
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Table 8. Time-Dependent Flow for Scenario #4 (1/3 for each group) 
Time 

Interval 
Link Flow (Averse) Flow 

(Neutral) 
Flow 

(Prone) 
Flow 

(Total) 
1 1 -> 3 2.12 2.6 3.1 7.82 
1 1 -> 4 2.88 2.4 1.9 7.18 
2 1 -> 3 3.91 5.02 6.07 15.01 
2 1 -> 4 6.09 4.98 3.93 14.99 
3 1 -> 3 5.96 7.45 9.39 22.81 
3 1 -> 4 9.04 7.55 5.61 22.19 
4 1 -> 3 5.92 7.44 9.32 22.68 
4 1 -> 4 9.08 7.56 5.68 22.32 
4 3 -> 5 2.12 2.6 3.1 7.82 
4 4 -> 5 2.88 2.4 1.9 7.18 
5 1 -> 3 6.2 7.2 9.54 22.93 
5 1 -> 4 8.8 7.8 5.46 22.07 
5 3 -> 5 3.91 5.02 6.07 15.01 
5 4 -> 5 6.09 4.98 3.93 14.99 
6 1 -> 3 4.15 4.76 6.22 15.13 
6 1 -> 4 5.85 5.24 3.78 14.87 
6 3 -> 5 5.96 7.45 9.39 22.81 
6 4 -> 5 9.04 7.55 5.61 22.19 
7 1 -> 3 2.08 2.17 3.19 7.44 
7 1 -> 4 2.92 2.83 1.81 7.56 
7 3 -> 5 5.92 7.44 9.32 22.68 
7 4 -> 5 9.08 7.56 5.68 22.32 
7 5 -> 6 3.48 3.01 2.7 9.2 
7 5 -> 7 1.52 1.99 2.3 5.8 
8 3 -> 5 6.2 7.2 9.54 22.93 
8 4 -> 5 8.8 7.8 5.46 22.07 
8 5 -> 6 6.58 6.16 5.22 17.96 
8 5 -> 7 3.42 3.84 4.78 12.04 
9 3 -> 5 4.15 4.76 6.22 15.13 
9 4 -> 5 5.85 5.24 3.78 14.87 
9 5 -> 6 10.11 8.88 7.47 26.46 
9 5 -> 7 4.89 6.12 7.53 18.54 

10 3 -> 5 2.08 2.17 3.19 7.44 
10 4 -> 5 2.92 2.83 1.81 7.56 
10 5 -> 6 10.17 8.58 7.28 26.02 
10 5 -> 7 4.83 6.42 7.72 18.98 
10 6 -> 2 3.48 3.01 2.7 9.2 
10 7 -> 2 1.52 1.99 2.3 5.8 
11 5 -> 6 10.31 8.06 7.19 25.55 
11 5 -> 7 4.69 6.94 7.81 19.45 
11 6 -> 2 6.58 6.16 5.22 17.96 
11 7 -> 2 3.42 3.84 4.78 12.04 
12 5 -> 6 6.78 5.33 4.94 17.05 
12 5 -> 7 3.22 4.67 5.06 12.95 
12 6 -> 2 10.11 8.88 7.47 26.46 
12 7 -> 2 4.89 6.12 7.53 18.54 
13 5 -> 6 3.24 2.63 2.43 8.3 
13 5 -> 7 1.76 2.37 2.57 6.7 
13 6 -> 2 10.17 8.58 7.28 26.02 
13 7 -> 2 4.83 6.42 7.72 18.98 
14 6 -> 2 10.31 8.06 7.19 25.55 
14 7 -> 2 4.69 6.94 7.81 19.45 
15 6 -> 2 6.78 5.33 4.94 17.05 
15 7 -> 2 3.22 4.67 5.06 12.95 
16 6 -> 2 3.24 2.63 2.43 8.3 
16 7 -> 2 1.76 2.37 2.57 6.7 

 


